Poisson Homology in Degree 0 for some Rings of Symplectic Invariants
نویسنده
چکیده
Let $\go{g}$ be a finite-dimensional semi-simple Lie algebra, $\go{h}$ a Cartan subalgebra of $\go{g}$, and $W$ its Weyl group. The group $W$ acts diagonally on $V:=\go{h}\oplus\go{h}^*$, as well as on $\mathbb{C}[V]$. The purpose of this article is to study the Poisson homology of the algebra of invariants $\mathbb{C}[V]^W$ endowed with the standard symplectic bracket. To begin with, we give general results about the Poisson homology space in degree 0, denoted by $HP_0(\mathbb{C}[V]^W)$, in the case where $\go{g}$ is of type $B_n-C_n$ or $D_n$, results which support Alev's conjecture. Then we are focusing the interest on the particular cases of ranks 2 and 3, by computing the Poisson homology space in degree 0 in the cases where $\go{g}$ is of type $B_2$ ($\go{so}_5$), $D_2$ ($\go{so}_4$), then $B_3$ ($\go{so}_7$), and $D_3=A_3$ ($\go{so}_6\simeq\go{sl}_4$). In order to do this, we make use of a functional equation introduced by Y. Berest, P. Etingof and V. Ginzburg. We recover, by a different method, the result established by J. Alev and L. Foissy, according to which the dimension of $HP_0(\mathbb{C}[V]^W)$ equals 2 for $B_2$. Then we calculate the dimension of this space and we show that it is equal to 1 for $D_2$. We also calculate it for the rank 3 cases, we show that it is equal to 3 for $B_3-C_3$ and 1 for $D_3=A_3$.
منابع مشابه
Hypertoric Poisson homology in degree zero
Etingof and Schedler formulated a conjecture about the degree zero Poisson homology of an affine cone that admits a projective symplectic resolution. We strengthen this conjecture in general and prove the strengthened version for hypertoric varieties. We also formulate an analogous conjecture for the degree zero Hochschild homology of a quantization of such a variety.
متن کاملPoisson-de Rham homology of hypertoric varieties and nilpotent cones
We prove a conjecture of Etingof and the second author for hypertoric varieties, that the Poisson-de Rham homology of a unimodular hypertoric cone is isomorphic to the de Rham cohomology of its hypertoric resolution. More generally, we prove that this conjecture holds for an arbitrary conical variety admitting a symplectic resolution if and only if it holds in degree zero for all normal slices ...
متن کاملClassification of multiplicity free symplectic representations
Let G be a connected reductive group acting on a finite dimensional vector space V . Assume that V is equipped with a G-invariant symplectic form. Then the ring O(V ) of polynomial functions becomes a Poisson algebra. The ring O(V ) of invariants is a sub-Poisson algebra. We call V multiplicity free if O(V ) is Poisson commutative, i.e., if {f, g} = 0 for all invariants f and g. Alternatively, ...
متن کاملCounting Curves in Elliptic Surfaces by Symplectic Methods
We explicitly compute family GW invariants of elliptic surfaces for primitive classes. That involves establishing a TRR formula and a symplectic sum formula for elliptic surfaces and then determining the GW invariants using an argument from [IP3]. In particular, as in [BL1], these calculations also confirm the well-known Yau-Zaslow Conjecture [YZ] for primitive classes in K3 surfaces. In [L] we...
متن کامل0 The Symplectic Sum Formula for Gromov - Witten Invariants
In the symplectic category there is a ‘connect sum’ operation that glues symplectic manifolds by identifying neighborhoods of embedded codimension two submanifolds. This paper establishes a formula for the Gromov-Witten invariants of a symplectic sum Z = X#Y in terms of the relative GW invariants ofX and Y . Several applications to enumerative geometry are given. Gromov-Witten invariants are co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0809.4983 شماره
صفحات -
تاریخ انتشار 2008